Unsteady State Relative Permeability and Capillary Pressure Estimation of Porous Media

نویسندگان

  • M. H. Ghazanfari
  • M. Khodabakhsh
  • R. Kharrat
  • D. Rashtchian
  • S. Vossoughi
چکیده

To take capillary effect into account, a series of primary drainage experiments of water by a sample oil fluid have been studied. The experiments performed under different low flow rates on a horizontal glass type micromodel as a model of porous media. Based on conventional macroscopic flow equations, the relative permeabilities and capillary pressure are determined by parameter estimation technique from history matching of saturation and pressure data of unsteady state immiscible displacements. The Coery type of relative permeability and capillary pressure functions are used. The results show that the end point relative permeability of oil phase and the dynamic term and the exponent of capillary pressure function increase with flow rate, but the saturation exponent of relative permeability functions are decreasing with flow rate. Also the results show that the capillary pressure and relative permeability curves are rate dependent and the relative permeability curves are increasing with flow rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Measuring Water and Oil Relative Permeabilities in Two-phase Fluid Flow in Porous Media

In this study, direct laboratory measurements of unsteady-state imbibition test are used in a new approach to obtain relative permeability curves with no predetermined functionality assumptions. Four equations of continuity, Darcy’s law, cumulative oil production, and water fractional flow are employed in combination together under certain assumptions to present the new approach which interpret...

متن کامل

Transport Property Estimation of Non-Uniform Porous Media

In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

An Estimation of Multiphase Relative Permeabilities in Reservoir Cores from Micro-CT Data

With significant increase of tomographic equipment power, demand for Prediction relative permeability prediction Predicting in porous media from digital image data. In this work, it is predicted three -phase relative permeabilities with co-applying Darcy’s and Stokes equations in two case studies, namely Bentheimer sandstone and Estaillades limestone which their micro-CT data files were downloa...

متن کامل

Macroscopic capillarity and hysteresis for flow in porous media.

A macroscopic theory for capillarity in porous media is presented, challenging the established view that capillary pressure and relative permeability are constitutive parameter functions. The capillary pressure function in the present theory is not an input parameter but an outcome. The theoretical approach is based on introducing the residual saturations explicitly as state variables [as in Ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006